0.52(x^2-0.545x+0.0225)=x^2+0.090x+0.0020

Simple and best practice solution for 0.52(x^2-0.545x+0.0225)=x^2+0.090x+0.0020 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.52(x^2-0.545x+0.0225)=x^2+0.090x+0.0020 equation:



0.52(x^2-0.545x+0.0225)=x^2+0.090x+0.0020
We move all terms to the left:
0.52(x^2-0.545x+0.0225)-(x^2+0.090x+0.0020)=0
We multiply parentheses
0.52x^2+0x-(x^2+0.090x+0.0020)+0.0117=0
We get rid of parentheses
0.52x^2-x^2+0x-0.090x-0.0020+0.0117=0
We add all the numbers together, and all the variables
-0.48x^2+0.91x+0.0097=0
a = -0.48; b = 0.91; c = +0.0097;
Δ = b2-4ac
Δ = 0.912-4·(-0.48)·0.0097
Δ = 0.846724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.91)-\sqrt{0.846724}}{2*-0.48}=\frac{-0.91-\sqrt{0.846724}}{-0.96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.91)+\sqrt{0.846724}}{2*-0.48}=\frac{-0.91+\sqrt{0.846724}}{-0.96} $

See similar equations:

| 15*x=15 | | -8x-14=-19x | | 3c+33=12 | | 9(p+2)=3(3p−5) | | -2.4x0.4=2.1-1.2x | | w/6+6=-7 | | 18y+4=4(3y+1) | | 16y+4=4(3y+1) | | X–1/5+7x/10=8 | | 18y+4=4(5y+1) | | 5=5+2t-16t | | 19y+4=4(5y+1) | | 29y+4=4(5y+1) | | -45x+-1.99=68.88 | | 3x=9-36 | | 16y-6y+2y=24 | | 20y+4=4(3y+9) | | 20y+8=4(3y+1) | | 5+4-2x=100 | | 20y+6=4(3y+1) | | 20y+0=4(3y+1) | | -5.6k=-4.2 | | 4^(-5x+5)=20 | | 20y+4=0(3y+1) | | 8/30=c/45 | | 15-0.75x=13=0.5x | | −2 | | (x+6)^2=-48 | | -7x-5-3=-9-6x | | 15x-0.75=13-0.5x | | −2 | | −2 |

Equations solver categories